
NFI SON LIMITRACE

Саморегулирующийся кабель Nelson Limitrace LT

- 1- Луженые медные проводники.
- 2- Саморегулирующаяся проводящая матрица.
- 3- Внутренняя термопластичная изоляция.
- 4- Внешняя изоляция.
- Стандартная металлическая оплетка.
- 5- Дополнительная внешняя изоляция.

ОПИСАНИЕ:

Саморегулирующийся греющий кабель NELSON LIMITRACE типа LT- это ленточный электрический нагреватель с параллельными проводниками. Проводящая греющая матрица находится вокруг медных шин 1,3 мм² с оловянным покрытием, состоящих из большого количества скрученных жил. Проводящий материал сердцевины увеличивает или уменьшает выработку тепла в ответ на изменения температуры. Два слоя изоляции обеспечивают диэлектрическую прочность, влагоустойчивость, защиту от ударных нагрузок и истирания, а так же защиту от химических воздействий. Внутренняя термопластичная изоляция напресована на проводящую матрицу. Витая медная оплетка с оловянным покрытием применяется на всех греющих кабелях. На случай применения в условиях, приводящих к механическим повреждениям имеется дополнительная оплетка из нержавеющей стали. Дополнительный (флюорополимерный или модифицированный полиолефинофый)изолятор может применяться при использовании в условиях повышенной влажности или вызывающих коррозию средах.

ПРИНЦИП ДЕЙСТВИЯ

Параллельные шины обеспечивают напряжение по всей длине греющего кабеля. Проводящая матрица представляет непрерывный греющий элемент, позволяя таким образом обрезать кабель в любом месте, исключая появление мертвых и холодных зон. Греющий кабель приобретает свои свойства саморегуляции благодаря свойствам проводящей матрицы. По мере возрастания температуры материала матрицы, количество локальных проводящих связей в матрице уменьшается, автоматически уменьшая тепловыделение. При понижении температуры, количество локальных проводящих связей увеличивается, приводя к увеличению тепловыделения. Это происходит в каждой точке по длине кабеля, таким образом, выходная мощность зависит от условий окружающей среды по длине трубопровода Способность саморегулирования дает возможность перехлестывать кабель, при этом не образуется горячих точек и зон локального перегрева.

ПРИМЕНЕНИЕ

Наиболее типичными сферами применения данного продукта являются следующие: системы антиобледенения, системы защиты от замерзания и системы поддержания температур в таких объектах, как промышленные трубопроводы, системы противопожарной защиты, системы подачи технических жидкостей, воды, возврата конденсата. Кабель предназначен для использования в обычных и взрывоопасных зонах.

Основной продукт поставляется в комплектации с медной оплеткой покрытой оловом, которая может быть использована и в уже упомянутых областях и в сухих, без коррозионного риска условиях. Также она используется для обеспечения заземления, в случае, если кабель устанавливается на непроводящие поверхности, такие как пластиковый или покрытый краской трубопровод

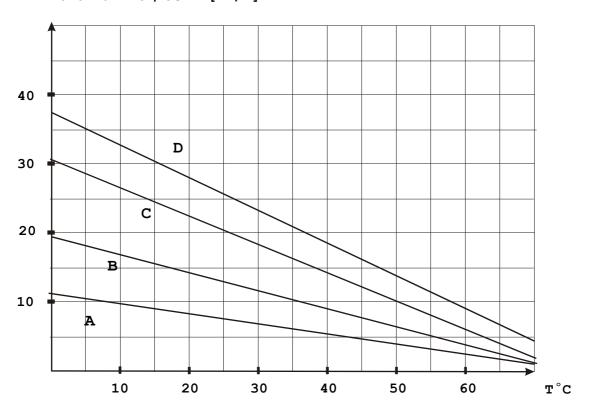
Дополнительные комплектации:

- -SS Металлическая оплетка из нержавеющей стали для использования в сухих, вызывающих коррозию условиях с повышенной опасностью истирания. Металлическая оплетка из нержавеющей стали не рекомендуется для использования как проводник для заземления.
- -Ј медная покрытая оловом оплетка с флюорполимерным изолятором подходит для применения нагревающего кабеля в условиях повышенной влажности, в контакте с органическими химикалиями, растворителями и в других условиях риска, а также в обычных условиях
- -JT- медная покрытая оловом оплетка и модифицированным полиолефиновым изолятором применяется в условиях повышенной влажности. Так же рекомендуется ее использование в условиях, приводящих к механическим повреждениям
- -C2D1 Рекомендуется для использования зонах риска класса2 подраздела 1 групп E,F и G. В стандартной конструкции используется покрытая оловом медная оплетка с внешним флюорполимерным изолятором. Требует соответствующих по каталогу переходников.

Саморегулирующийся кабель Nelson Limitrace LT

Наименов ание	Эксплуатационно е напряжение [В]	Максимальна я длина [м]	Максимальная рабочая температура Кабеля С ^о	Максимальная температура без нагрузки Со	Температурный класс
LT23	240	185	65	85	T6
LT25	240	155	65	85	T6
LT28	240	125	65	85	T5
LT210	240	115	65	85	T5

Т-группа электрического оборудования определяет максимальную температуру на поверхности оборудования. Применяются при использовании оборудования в зоне риска.


Максимальная длина кабеля на автоматический прерыватель.

Погонная мощность	Стартовая температура С ^о	Максимальная длина кабеля.				
Вт/м		15 A	20A	30A	40A	
	10	185	-/-	-/-	-/-	
9	- 17	130	177	185	-/-	
	-29	117	156	185	-/-	
16	10	132	155	-/-	-/-	
	-17	89	119	155	-/-	
	-29	79	106	103	-/-	
26	10	88	116	125	-/-	
	-17	60	81	118	125	
	-29	52	70	104	125	
32	10	74	98	115	-/-	
	-17	52	71	104	115	
	-29	48	62	93	115	

- 1. Величина контура рассчитывается из минимальной стартовой температуры.
- 2. При использовании кабеля при напряжении в 208, 220 или 270 Вольт, используйте коэффициент корректирования, представленный в Таблице Корректирования напряжения
- 3. При использовании 2-х и более греющих кабелей с разными коэффициентами мощности параллельно в одном переключателе контура, используйте значения из колонки 15А, разделите эти значения на МАХ длину в метрах и получите значение в ампер/м для каждого кабеля. Умножите длину каждого нагревателя на полученные величины amp/meter, чтобы вычислить полную погрузку прерывателя. Полученная величина не должна превысить оценку тока прерывателя.
- 4. Нагревающие кабели, обеспеченные дополнительными конструкциями СВ, JT содержат металлический экран заземления как и требуется в гл. 427-23 Свода Правил
- 5. Гл.427-22 Свода Правил требует, чтобы оборудования по защите от нарушения заземления для каждого ответвления контура, дополняло электрическое греющее оборудование.

Зависимость погонной мощности от температуры окружающей среды кабеля Nelson LT.

Погонная мощность [Вт/м]

- LT23. LT25. LT28.
- B -C -D -LT210.

NELSON LIMITRACE

Саморегулирующийся кабель Nelson Limitrace LT

Номера по каталогу кабеля Nelson Limitrace LT

	Погонная мощность [Вт/м]					
Напряжение	9	16	26	33		
240	LT23	LT25	LT28	LT210		

Комплектации:

- СВ (стандартная)- медная луженая оловом оплетка.
- J медная луженая оловом оплетка с изоляцией из флюорополимера.
- ЈТ медная луженая оловом оплетка с изоляцией из модифицированного полиолефина.

Корректировка при различных значениях напряжения.

Использование изделий LIMITRACE при иных, чем пропорциональные значениях напряжения требует корректировки. Следует ориентироваться на наименьшее из ближайших значение мощности и наибольшее из ближайших значений длины цепи.

Наименова	Поправочный коэффициент						
ние	208 B		220 B		277 B		
	Мощность	Длина	Мощность	Длина	Мощность	длина	
LT23	0,85	0,98	0,91	0,99	1,13	1,05	
LT25	0,87	0,98	0,92	0,97	1,09	1,06	
LT28	0,88	0,94	0,93	0,95	1,08	1,08	
LT210	0,89	0,94	0,94	0,95	1,05	1,07	

Допуски:

NELSON тип LT допущен к использованию в опасных зонах Zone 1 и Zone 2 KEMA. Продукт проверен в соответствии с Европейскими Стандартами EN 50014:1997 и EN 50019:2000 ATEX II 2 G D EEx eII KEMA 03 ATEX 2019 U

Ростехнадзор Росс US.ГБ05В01370

FM
Обычные зоны
(-CB, -J, -JT, -SS)
Опасные зоны
(-CB, -J, -JT)
Class I, Division 2;
Groups B, C, D, Class II;
Division 2; Group G
Class III; Division 2
(C2D1)
Class II; Division I
Groups E, F, G, Class I;
Zone 1; Group IIC

CSA
Обычные зоны
(-CB, -J, -JT, -SS)
Опасные зоны
(-CB, -J, -JT)
Class I, Division 2;
Groups B, C, D, Class II;
Division 2; Group E, F, G
Class III, Division 2;
(-J)
Class I, Division 2,
Groups B, C, D

UL
Обычные зоны
(-СВ, -J, -JT, -SS)
Опасные зоны
(-СВ, -J, -JT)
Class I, Division 2;
Groups A, B, C, D
Class II, Division 2
Groups F, G
Class I, Zone 2
Group IIC
(D1 option)
Class I, Division 1
Groups B, C, D

Аксессуары:

- □ Соединительное оборудование для подключения электоропитания, Т-образные переходники, переходники для соединений внахлест, концевые изоляторы (NELSON серии PLT)
- □ Термостаты (NELSON серии ТА,ТН,ТЕ,НС).
 - Коробки для переходников ,ленты и предупреждающие знаки.
- 🛘 Изготовленные на заказ регуляторы, панели наблюдения, панели регулирования мощности